10월 15일 (화) 개최되는 신소재공학과 정기세미나를 아래와 같이 안내해드립니다.

= 아 래 =

1. 일 시 : 2013. 10. 15 (화), 16:00 ~
2. 장 소 : 응용공학동 1층 영상강의실
3. 연 사 : Prof. Yong-beom Lim (Dept. of MSE, Yonsei University)
4. 제 목 : Bioinspired Materials Based on Self-Assembling Peptides
5. 발표내용요약(Abstract)

  Research on nanometer-sized structures has become one of the fastest growing fields of science & engineering. The application potential of nanostructures is diverse, ranging from electronic and detection materials to biomaterials. The most important reason for their popularity is that they are small. From the standpoint of a biological system, submicron-sized nano-objects are generally much smaller than most cells, but are similar in size to many subcellular components (proteins and DNA), cellular organelles (mitochondria, lysosomes, ribosomes, and cytoskeleton), and microorganisms (viruses). Most eukaryotic cells have a typical size of a few tens of microns in diameter. Then the submicron-sized biological objects can be regarded as "biological nanostructures" as compared to "synthetic nanostructures". Self-assembly can be defined as the spontaneous organization of disordered molecular units into ordered structures as a consequence of specific, local interactions among the components themselves. Molecular self-assembly is referred to as a "bottom-up" approach in contrast to a "top-down" technique where the desired final structure is carved from a larger block of matter. In fact, the formation of most biological nanostructures is also driven by the self-assembly process. Examples include the self-assembly of phospholipids to form cell membranes, the formation of a DNA double helix through specific hydrogen bonding of individual strands, and the folding of a polypeptide chain to form protein tertiary or quaternary structure. As we can find nice examples of self-assembled nanostructures in biological systems, it is not surprising that many synthetic nanostructures have been constructed with the inspiration from Nature. In recent years, an interest in manmade or artificial bionanostructures, including peptide-based self-assembled nanostructures has been intense and is expected to escalate further. Proteins are perhaps one of the most diverse and complex structures in nature. Importantly, most natural bionanomachineries are composed of protein. Proteins, similarly to synthetic polymers, are in fact polymeric molecules. Proteins, however, have several unique features when compared to synthetic polymers. One of the most salient features of proteins is that each proteins form unique three dimensional structures, which is determined by their amino acid sequences. When compared to synthetic polymers, another important characteristics of proteins is the monodispersity in molecular weight. When appropriately designed, self-assembling peptide nanostructures can mimic the molecular recognition functions of natural proteins. This research group intends to develop artificial bionanostructures that can mimic or even have enhanced functional properties over the protein-based bionanostructures of biological origin. Moreover, we expect that artificial bionanostructures can be designed to have properties that are unprecedented in nature. Since the major driving force that underlies the formation of bionanostructures is a noncovalent self-assembly process, elaborately designed synthetic self-assembly building blocks should be one of the most suitable candidates for the construction of artificial bionanostructures. In this talk, our recent research efforts towards the understanding of peptide self-assembly process and the development of self-assembled peptide nanostructures as materials with adaptable functions will be presented.