Seminar

Date 2018-11-20 

▣ MSE Special Seminar 

  

■ Title Novel nickel-hydroxide/oxyhydroxide actuating material that can be triggered by both light and electricity

 

■ Speaker : Prof. Alfonso H. W. Ngan (Department of Mechanical Engineering, University of Hong Kong)

 

■ Date and Time : 2018/11/20 (Tue), 14:00~15:00

 

■ Venue : Conference Room #1 (Applied Engineering Building W1-1, #2430)

 

■ Host : Prof. Hyuck-Mo Lee, Seung Min Han

 

■ Abstract : Here we report a novel actuating material – nickel hydroxide-oxyhydroxide – that exhibits enormous actuation due to a volume change stimulated either electrochemically, or by illumination of visible light of low intensities. For electrochemical actuation, Ni(OH)2/NiOOH is capable of undergoing fast, reversible, and large actuation in alkaline electrolytes under potentials of less than 1 V, due to a redox reaction involving volume changes. On the other hand, the light actuation of Ni(OH)2/NiOOH is due to its turbostratic crystal structure which is capable of intercalating water molecules. It is shown that the intercalated water can be rapidly and reversibly desorbed into the environment under visible light of low intensities, resulting in fast actuation driven wirelessly by light.

    By electroplating the actuating material on passive substrates, we have fabricated film-actuators capable of undergoing reversible bending and curling with an intrinsic actuating stress of tens of megapascals at response rates in the order of tens to hundreds of degrees per second, which are comparable to mammalian skeletal muscles. Also, by intentionally electroplating the nickel hydroxide-oxyhydroxide on selected areas of the substrate, we have also fabricated actuation devices of varies shapes and functions, e.g. a hinged actuator that can lift objects ~100 times of the weight of the actuating material is achieved, and other examples showing the potential use in robotic devices. The light-induced actuation mechanism reported here has the potential for realizing wirelessly powered micro-robotic devices.

 

Related publications:

[1] K.W. Kwan, S.J. Li, N.Y. Hau, W.D. Li, S.P. Feng and A.H.W. Ngan, (2018), “Light-stimulated actuators based on nickel hydroxide-oxyhydroxide”, Science Robotics3, eaat4051.  

[2] K.W. Kwan, N.Y. Hau, S.P. Feng and A.H.W. Ngan, (2017), “Electrochemical actuation of nickel hydroxide/oxyhydroxide at sub-volt voltages”, Sensors and Actuators B: Chemical 248, 657-664.