Highlight

Intro 우리 학과 홍승범 교수 연구팀이 원자력간 현미경 (Atomic force microscope, AFM)의 한 모드인 전기화학 변위 현미경 (Electrochemical strain microscopy, ESM)을 이용해 리튬이온전지 소재 내부의 이온 이동 특성을 나노미터 수준에서 정량적으로 측정하는 방법을 개발했다고 13일 밝혔다.

연구팀은 비행시간형 2차 이온 질량 분석법 (Time-of-flight secondary ion mass spectroscopy, ToF-SIMS)과 유도결합 플라즈마 분광분석기 (Inductively coupled plasma optical emission spectrometer, ICP-OES)를 이용해 고체 전해질 시료의 깊이에 따른 이온 분포를 정략적으로 계산하고, 전기화학 변위 현미경 결과와의 캘리브레이션 (calibration, 계측기 등의 눈금을 표준기 등을 사용해 바로잡는 일)에 성공했다.

우리 대학 신소재공학과 박건 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)에 게재됐다. (논문명: Quantitative Measurement of Li-Ion Concentration and Diffusivity in Solid-State Electrolyte) 
Principal Investigator Prof. Hong, Seungbum 
Date 2021-04-13 

(왼쪽부터) 신소재공학과 홍승범 교수, 박건 박사과정

< (왼쪽부터) 신소재공학과 홍승범 교수, 박건 박사과정 >

 

오늘날 리튬이온전지는 휴대용 전자 장비와 전기차를 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다폭발적인 수요에 발맞춰 리튬이온전지의 에너지 용량충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 가속화되고 있다. 

그러나 기존의 전기화학 특성 평가 방법은 소재 혹은 소자 특성의 평균값을 측정하는 것에 집중되어 있기에나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기에는 충분하지 않다따라서 전기화학 특성에 대한 통합적인 이해를 위해 미시적 수준에서 공간 분해능을 가진 분석 기술의 개발은 필수적이다. 

우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(Atomic force microscope, AFM)의 한 모드인 전기화학 변위 현미경(Electrochemical strain microscopy, ESM)을 이용해 리튬이온전지 소재 내부의 이온 이동 특성을 나노미터 수준에서 정량적으로 측정하는 방법을 개발했다고 13일 밝혔다. 

전기화학 변위 현미경은 나노 크기의 탐침에 전압을 가했을 때이온의 이동이 유발하는 시료 표면의 변형(displacement)을 측정하는 기술로서 이 변형을 발생시킨 이온의 양과 이온의 이동도 등을 간접적으로 측정할 수 있게 도와주는 기술이다. 

홍 교수 연구팀은 비행시간형 2차 이온 질량 분석법(Time-of-flight secondary ion mass spectroscopy, ToF-SIMS)과 유도결합 플라즈마 분광분석기(Inductively coupled plasma optical emission spectrometer, ICP-OES)를 이용해 고체 전해질 시료의 깊이에 따른 이온 분포를 정량적으로 계산하고전기화학 변위 현미경 결과와의 캘리브레이션(calibration, 계측기 등의 눈금을 표준기 등을 사용해 바로잡는 일)에 성공했다. 

이후연구진에 의해 고안된 직류 전압 펄스(pulse)를 시료의 깊이에 따라 가했으며전기장에 의해 표면으로 이동했다가 다시 내부 쪽으로 확산하는 이온을 전기화학 변위 현미경으로 영상화했다특히해당 펄스를 설계하는 과정에서 기존 전기화학 변위 현미경 사용에 대한 오류를 지적하고개선된 사용 방법에 대해 안내했다그 결과연구팀은 시간 및 거리의 함수로 이온의 이동 과정을 영상화하는 데 성공했으며이 결과를 이용해 깊이 및 이온의 농도에 따라 변화하는 확산계수 값을 정량적으로 보여줬다. 

그림 1. (a) 시료 깊이에 따라 가해진 삼각 직류 펄스와 펄스 종료 직후, 이온의 거동을 보여주는 전기화학 변위 현미경 결과, (b) 비행시간형 2차 이온 질량 분석법 및 유도결합 플라즈마 분광분석기 결과와 전기화학 변위 현미경 결과의 상관관계 분석.

< 그림 1. (a) 시료 깊이에 따라 가해진 삼각 직류 펄스와 펄스 종료 직후, 이온의 거동을 보여주는 전기화학 변위 현미경 결과, (b) 비행시간형 2차 이온 질량 분석법 및 유도결합 플라즈마 분광분석기 결과와 전기화학 변위 현미경 결과의 상관관계 분석. >

 

그림 2. (a) 시간과 거리에 따른 전기화학 변위 현미경 결과, (b) 깊이에 따른 이온 확산계수 계산 결과.

< 그림 2. (a) 시간과 거리에 따른 전기화학 변위 현미경 결과, (b) 깊이에 따른 이온 확산계수 계산 결과. >

 

홍승범 교수는 "이온의 움직임을 나노미터 수준에서 정량적으로 관찰할 수 있는 방법론이 다양한 이온 거동의 메커니즘을 규명하는데 기여할 것ˮ이라며, "추후 다양한 실제 소자 구동 환경을 모사한 상태에서 이번 방법론을 적용하는 후속 연구를 진행할 것ˮ이라고 설명했다.

우리 대학 신소재공학과 박건 박사과정이 제저자로 참여한 이번 연구는 국제 학술지 ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)에 게재됐다. (논문명: Quantitative Measurement of Li-Ion Concentration and Diffusivity in Solid-State Electrolyte) 

 

한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.