Highlight

Intro 우리 대학 신소재공학과 육종민 교수 연구팀이 그래핀을 이용해 유체 내 물질들의 분자, 원자 단위 고해상도 영상을 획득할 수 있는 전자현미경 기술을 개발했다고 19일 밝혔다.

이번 연구 결과로 유체에서 일어나는 다양한 반응들의 분자 단위, 원자 단위에서의 관찰이 쉬워졌으며, 그동안 관찰하지 못했던 물질의 합성 과정을 밝히고 바이러스 및 단백질들의 상호작용과 같은 생명 현상 규명의 실마리를 제공할 수 있는 등 기초 과학 및 공학 분야에서 다양하게 활용될 수 있을 것으로 기대된다.

우리 대학 신소재공학과 구건모 박사, 박정재 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)'에 내지 삽화와 함께 1월 14일 字 게재됐다. (논문명 : Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopy). 
Principal Investigator Prof. Yuk, Jong Min 
Date 2021-01-19 

(왼쪽부터) 신소재공학과 육종민 교수, 구건모 박사, 박정재 박사과정

< (왼쪽부터) 신소재공학과 육종민 교수, 구건모 박사, 박정재 박사과정 >

 

우리 대학 신소재공학과 육종민 교수 연구팀이 그래핀을 이용해 유체 내 물질들의 분자원자 단위 고해상도 영상을 획득할 수 있는 전자현미경 기술을 개발했다고 19일 밝혔다. 

이번 연구 결과로 유체에서 일어나는 다양한 반응들의 분자 단위원자 단위에서의 관찰이 쉬워졌으며그동안 관찰하지 못했던 물질의 합성 과정을 밝히고 바이러스 및 단백질들의 상호작용과 같은 생명 현상 규명의 실마리를 제공할 수 있는 등 기초 과학 및 공학 분야에서 다양하게 활용될 수 있을 것으로 기대된다. 

우리 대학 신소재공학과 구건모 박사박정재 박사과정이 공동 제저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)'에 내지 삽화와 함께 1월 14일 字 게재됐다. (논문명 Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopy).

전자빔을 광원으로 이용하는 전자현미경 기술은 일반 광학현미경보다 약 수천 배가량 높은 배율에서 물질을 관찰할 수 있어나노미터(nm, 10억분의 1미터단위로 집적화되고 있는 반도체 공정에서 품질 관리와 코로나 바이러스와 같은 생체 분자의 구조를 규명하는 데 활발히 이용되고 있다.

그렇지만 전자현미경을 구동하기 위해서는 매우 높은 수준의 진공 상태가 필요하다진공에서 쉽게 증발하는 액체 샘플은 관찰하기가 힘들어 기존에는 액체 시료를 건조시키거나 시료를 급격히 냉동시키는 초저온 전자현미경 방식으로 관찰이 이뤄졌다하지만 이런 방식들은 시료가 정지된 상태에서 구조적인 정보만을 주기 때문에액상 전자현미경 기술과 같이 액체 내에서 일어나는 역동적인 현상을 관찰할 수 있는 기술에 관한 관심이 높아지고 있다. 

전자현미경을 이용해 액체를 관찰하는 것은 아쿠아리움에서 물고기들을 관찰하는 것으로 비유할 수 있다물고기들을 선명하게 관찰하기 위해서는 높은 투과도를 가지고 수압을 견딜 수 있는 튼튼한 유리가 필요한 것처럼액상 투과전자현미경에서는 전자빔에 대해서 투명하며 높은 진공 상태를 견딜 수 있는 물질을 필요로 한다. 

기존의 액상 전자현미경 기술은 약 50나노미터(nm) 두께의 질화 실리콘 막을 이용해 액체를 고진공으로부터 보호했지만이러한 막은 전자빔에 대해서 반투명하므로 물질을 흐릿하게 만들어 원자 단위의 관찰을 방해하고특히 단백질이나 바이러스와 같은 생체 분자들의 경우 명암을 높이는 염색 과정 없이는 쉽게 관찰할 수 없었다. 

2012년 육 교수 연구팀은 이를 해결하기 위해 차세대 소재로 주목받고 있는 그래핀 두 층 사이에 액체를 가두는 그래핀 액상 셀 기술을 세계 최초로 도입했고이번 연구에서 이를 개선해 자유로운 액체 순환이 가능한 그래핀 아쿠아리움 전자현미경 이미징 플랫폼을 개발하는 데 성공했다. 

연구팀이 투과 막으로 이용한 그래핀은 원자 단위의 두께를 가지고 강철보다 200배 높은 강도를 가지고 있다또한 연구팀은 자유로운 액체 순환과 교환을 위해 30~100나노미터(nm) 두께의 액상 수로를 가지는 구조체를 반도체 제작 공정인 리소그래피 공정으로 구현해 그래핀 액상 유동 칩을 제작했다. 

연구팀의 그래핀 액상 유동 칩은 약 4기압에 달하는 압력 차를 견딜 수 있으며기존보다 20배 빠른 액체 유동 조건에서도 안정적인 작동이 가능하다또한 기존 막보다 100배 정도 얇은 그래핀은 전자빔에 대해 투명하기 때문에 이를 이용해 원자 단위에서 물질을 선명하게 관찰할 수 있으며박테리아 및 생체 분자를 염색 과정 없이 온전히 관찰할 수 있다. 

연구팀이 개발한 그래핀 액상 유동 칩은 체내의 혈관과 같은 역할을 할 수 있으므로 코로나 바이러스가 어떻게 감염을 일으키는지알츠하이머와 같은 퇴행성 뇌 질환의 발병 원인으로 여겨지는 아밀로이드 섬유화가 어떻게 진행되는지 등과 같이 기존 기술로는 관찰할 수 없었던 현상들의 직접적인 관찰과 신약 개발에 도움을 줄 수 있을 것으로 기대된다. 

그림 1. 그래핀 액상 유동 칩의 모식도

< 그림 1. 그래핀 액상 유동 칩의 모식도 >

 

그림 2. 그래핀 액상 유동 침을 이용해 관찰한 나노 입자 및 박테리아의 전자현미경 이미지

< 그림 2. 그래핀 액상 유동 침을 이용해 관찰한 나노 입자 및 박테리아의 전자현미경 이미지 >

 

육 교수는 "새로운 이미징 플랫폼의 개발은 과학 기술 발전의 토대가 되는 것으로액체 내 물질들을 분자 및 원자 단위로 관찰하면 자연의 가장 작은 단위에서 시작되는 다양한 현상들을 규명할 수 있으며이를 토대로 미지에 싸여있던 생명 현상의 비밀을 밝힐 수 있을 것으로 기대한다ˮ 라고 말했다. 

 

한편 이번 연구는 삼성 미래기술 육성 센터의 지원을 받아 수행됐다.

그림 3. 국제학술지 어드밴스트 머터리얼스 표지

< 그림 3. 국제학술지 어드밴스트 머터리얼스 표지 >